2022秋某中学七年级拓展题2

邱福星      约7784字 0次阅读
代数七年级有理数
难度:★★★★☆
PDF下载
  1. 计算:$\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}=\underline{\hspace{3em}}$.

    【答案】$\dfrac{5}{11}$.

    • 原式$=\dfrac{1}{1\times 3}+\dfrac{1}{3\times 5}+\dfrac{1}{5\times 7}+\dfrac{1}{7\times 9}+\dfrac{1}{9\times 11}$

      $\hspace{2.1em}=\dfrac{3-1}{1\times 3}\times \dfrac{1}{2}+\dfrac{5-3}{3\times 5}\times \dfrac{1}{2}+\dfrac{7-5}{5\times 7}\times \dfrac{1}{2}+\dfrac{9-7}{7\times 9}\times \dfrac{1}{2}+\dfrac{11-9}{9\times 11}\times \dfrac{1}{2}$

      $\hspace{2.1em}=\left( 1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11} \right)\times \dfrac{1}{2}$

      $\hspace{2.1em}=\left( 1-\dfrac{1}{11} \right)\times \dfrac{1}{2}$

      $\hspace{2.1em}=\dfrac{5}{11}$.

  2. 计算:$\dfrac{1}{2}+\left( \dfrac{1}{4}+\dfrac{3}{4} \right)+\left( \dfrac{1}{6}+\dfrac{3}{6}+\dfrac{5}{6} \right)+\cdots +\left( \dfrac{1}{98}+\dfrac{3}{98}+\cdots +\dfrac{97}{98} \right)$=$\underline{\hspace{3em}}$.

    【答案】$\dfrac{1225}{2}$

    • 原式$=\dfrac{1}{2}+\dfrac{2^2}{2\times 2}+\dfrac{3^2}{2\times 3}+\cdots +\dfrac{49^2}{2\times 49}$

      $\hspace{2.1em}=\dfrac{1}{2}+\dfrac{2}{2}+\dfrac{3}{2}+\cdots +\dfrac{49}{2}$

      $\hspace{2.1em}=\dfrac{1}{2}\times (1+2+3+\cdots +49)$

      $\hspace{2.1em}=\dfrac{1225}{2}$.

  3. 计算:$\dfrac{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\cdots +\dfrac{1}{99}-\dfrac{1}{100}}{\dfrac{1}{1+101}+\dfrac{1}{2+102}+\dfrac{1}{3+103}+\cdots +\dfrac{1}{50+150}}=\underline{\hspace{3em}}$

    【答案】$2$

    • 分母$=\dfrac{1}{102}+\dfrac{1}{104}+\dfrac{1}{106}+\cdots +\dfrac{1}{200}$

      $\hspace{2.1em}=\dfrac{1}{2}\times \left( \dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+\cdots +\dfrac{1}{100} \right)$,

      分子$=\left( 1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots +\dfrac{1}{100} \right)-2\times \left( \dfrac{1}{2}+\dfrac{1}{4}+\cdots +\dfrac{1}{100} \right)$

      $\hspace{2.1em}=\dfrac{1}{51}+\dfrac{1}{52}+\cdots +\dfrac{1}{100}$,

      原式$=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+\cdots +\dfrac{1}{100}}{\dfrac{1}{2}\times \left( \dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+\cdots +\dfrac{1}{100} \right)}=2$.

      故答案为:$2$.

  4. 计算:$\dfrac{5}{1\times 2\times 3}+\dfrac{7}{2\times 3\times 4}+\cdots +\dfrac{19}{8\times 9\times 10}=\underline{\hspace{3em}}$.

    【答案】$\dfrac{23}{15}$

    • 法1:原式$=\dfrac{2+3}{1\times 2\times 3}+\dfrac{3+4}{2\times 3\times 4}+\cdots +\dfrac{9+10}{8\times 9\times 10}$

      $=\dfrac{2}{1\times 2\times 3}+\dfrac{3}{1\times 2\times 3}+\dfrac{3}{2\times 3\times 4}+\dfrac{4}{2\times 3\times 4}\cdots +\dfrac{9}{8\times 9\times 10}+\dfrac{10}{8\times 9\times 10}$

      $=\left( \dfrac{1}{1\times 2}+\dfrac{1}{2\times 3}\cdots +\dfrac{1}{8\times 9} \right)+\left( \dfrac{1}{1\times 3}+\dfrac{1}{3\times 5}\cdots +\dfrac{1}{7\times 9} \right)+\left( \dfrac{1}{2\times 4}+\dfrac{1}{4\times 6}\cdots +\dfrac{1}{8\times 10} \right)$

      $=\left( 1-\dfrac{1}{9} \right)+\dfrac{1}{2}\times \left( 1-\dfrac{1}{9} \right)+\dfrac{1}{2}\times \left( \dfrac{1}{2}-\dfrac{1}{10} \right)$

      $=\dfrac{8}{9}+\dfrac{1}{2}\times \dfrac{8}{9}+\dfrac{1}{2}\times \dfrac{2}{5}$

      $=\dfrac{23}{15}$.

      法2:原式$=\dfrac{2\times 3-1}{1\times 2\times 3}+\dfrac{2\times 4-1}{2\times 3\times 4}+\cdots +\dfrac{2+10-1}{8\times 9\times 10}$

      $=\dfrac{2}{1\times 2}-\dfrac{1}{1\times 2\times 3}+\dfrac{2}{2\times 3}-\dfrac{1}{2\times 3\times 4}+\cdots +\dfrac{2}{8\times 9}-\dfrac{1}{8\times 9\times 10}$

      $=2\times \left( \dfrac{1}{1\times 2}+\dfrac{1}{2\times 3}\cdots +\dfrac{1}{8\times 9} \right)-\left( \dfrac{1}{1\times 2\times 3}+\dfrac{1}{2\times 3\times 4}+\cdots +\dfrac{1}{8\times 9\times 10} \right)$

      $=2\times \left( 1-\dfrac{1}{9} \right)-\dfrac{1}{2}\times \left( \dfrac{1}{1\times 2}-\dfrac{1}{9\times 10} \right)$

      $=\dfrac{16}{9}-\dfrac{11}{45}$

      $=\dfrac{23}{15}$.

      法3:原式$=\dfrac{3+2}{1\times 2\times 3}+\dfrac{3+4}{2\times 3\times 4}+\cdots +\dfrac{3+16}{8\times 9\times 10}$

      $=3\times \left( \dfrac{1}{1\times 2\times 3}+\dfrac{1}{2\times 3\times 4}+\cdots +\dfrac{1}{8\times 9\times 10} \right)2\times \left( \dfrac{1}{1\times 2\times 3}+\dfrac{2}{2\times 3\times 4}+\cdots +\dfrac{8}{8\times 9\times 10} \right)$

      $=3\times \dfrac{1}{2}\times \left( \dfrac{1}{1\times 2}-\dfrac{1}{2\times 3}+\dfrac{1}{2\times 3}-\dfrac{1}{3\times 4}+\cdots +\dfrac{1}{8\times 9}-\dfrac{1}{9\times 10} \right)+2\times \left( \dfrac{1}{2\times 3}+\dfrac{1}{3\times 4}+\cdots +\dfrac{1}{9\times 10} \right)$

      $=\dfrac{3}{2}\times \left( \dfrac{1}{1\times 2}-\dfrac{1}{9\times 10} \right)+2\times \left( \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\cdots +\dfrac{1}{9}-\dfrac{1}{10} \right)$

      $=\dfrac{3}{2}\times \left( \dfrac{1}{2}-\dfrac{1}{90} \right)+2\times \left( \dfrac{1}{2}-\dfrac{1}{10} \right)=\dfrac{7}{4}-\dfrac{1}{60}-\dfrac{1}{5}=\dfrac{23}{15}$.

      故答案为:$\dfrac{23}{15}$.

  5. 计算:$\dfrac{99}{1\times 2\times 3}+\dfrac{98}{2\times 3\times 4}+\dfrac{97}{3\times 4\times 5}+\cdots +\dfrac{1}{99\times 100\times 101}=\underline{\hspace{3em}}$.

    【答案】$\dfrac{2475}{101}$

    • 原式$=\dfrac{100-1}{1\times 2\times 3}+\dfrac{100-2}{2\times 3\times 4}+\dfrac{100-3}{3\times 4\times 5}+\cdots +\dfrac{100-99}{99\times 100\times 101}$

      $=\left( \dfrac{100}{1\times 2\times 3}+\dfrac{100}{2\times 3\times 4}+\dfrac{100}{3\times 4\times 5}+\cdots +\dfrac{100}{99\times 100\times 101} \right)$

      $-\left( \dfrac{1}{2\times 3}+\dfrac{1}{3\times 4}+\dfrac{1}{4\times 5}+\cdots +\dfrac{1}{100\times 101} \right)$

      $=50\times \left( \dfrac{1}{1\times 2}-\dfrac{1}{2\times 3}+\dfrac{1}{2\times 3}-\dfrac{1}{3\times 4}+\cdots +\dfrac{1}{99\times 100}-\dfrac{1}{100\times 101} \right)$

      $-\left( \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\cdots +\dfrac{1}{100}-\dfrac{1}{101} \right)$

      $=50\times \left( \dfrac{1}{2}-\dfrac{1}{10100} \right)-\left( \dfrac{1}{2}-\dfrac{1}{101} \right)$

      $=\dfrac{2475}{101}$.

  6. 设三个互不相等的有理数,既可表示为$1$,$a+b$,$a$的形式,又可表示为$0$,$\dfrac{b}{a}$,$b$的形式,则${a}^{2019}+{b}^{2020}$的值为$\underline{\hspace{3em}}$.

    【答案】$0$

    • 根据三个互不相等的有理数,既可表示为$1$,$a+b$,$a$的形式,又可表示为$0$,$\dfrac{b}{a}$,$b$的形式,也就是说这两个数组的数分别对应相等,即$a+b$与$a$中有一个是$0$,$\dfrac{b}{a}$与$b$中有一个是$1$,由$a\ne 0$可以判断出$a+b=0$,则$a=-b$,$\dfrac{b}{a}=-1$,所以$b=1$,$a=-1$.

      所以原式$=(-1)^{2019}+1^{2020}=-1+1=0$

  7. $x+y$,$x-y$,$xy$,$\dfrac{x}{y}$四个数中的三个有相同的数值,求出所有具有这样性质的数对$(x,y)$.

    【答案】$\left( \dfrac{1}{2},-1 \right)$和$\left( -\dfrac{1}{2},-1 \right)$.

    • 由于$\dfrac{x}{y}$有意义,所有$y\ne 0$,从而$x+y\ne x-y$,
      因此$xy=\dfrac{x}{y}$,即$x(y^2-1)=0$,
      所有$x=0$或$y=\pm 1$,
      ($1$)若$x=0$,则由$xy=x+y$,或$xy=x-y$,得$y=0$,这样$\dfrac{x}{y}$无意义;
      ($2$)若$y=1$,则由$xy=x+y$得$x=x+1$,
      或由$xy=x-y$得$x=x-1$,都导致矛盾;
      ($3$)若$y=-1$则由$xy=x+y$得$x=\dfrac{1}{2}$,
      由$xy=x-y$得$x=-\dfrac{1}{2}$,
      所以符合要求的数只有$\left( \dfrac{1}{2},-1 \right)$和$\left( -\dfrac{1}{2},-1 \right)$.
  8. 由$2016$个互不相等的有理数,每$2015$个的和都是分母为$4034$的最简真分数,求这$2016$个有理数的和.

    【答案】$\dfrac{1008}{2015}$

    • $2016$个互不相等的有理数,每$2015$个相加得到$2016$个不同的和,$4034=2\times 2017$,分母为$4034$的最简真分数有$4034\times\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{2017}\right)=2016$个,通过首尾配对,这$2016$个最简真分数的和是$2016\div 2=1008$,这个和也是原来$2016$个有理数和的$2015$倍,所以这$2016$个有理数的和是$\dfrac{1008}{2015}$
  9. 求以$2088$为分母的最简真分数的个数,并求出它们的和.

    【答案】$672$、$336$

    • $2088=2^3\times 3^2 \times 29$,那么$1\sim 2088$中与$2088$互质的个数有
      $2088\times \left(1-\dfrac{1}{2}\right)\times \left(1-\dfrac{1}{3}\right)\times \left(1-\dfrac{1}{29}\right)=672$个,即以$2088$为分母的最简真分数有$672$个,其中若$(n,2088)=1$,根据辗转相减法可得$(2088-n,2088)=1$,因此首尾配对和都是$1$,这$672$个最简真分数的和是$672\div 2=336$
  10. 在整数$1$,$3$,$5$,$7$,$\cdots $,$2k-1$,$\cdots $,$2017$之间填入符号“$+$”和“$-$”号,依此运算,所有可能的代数和中最小的非负数是多少?若最后一项为$2019$呢?

    【答案】$1$、$0$

    • 由于整数的符号不影响其奇偶性,因此也不影响代数和的奇偶性,我们首先可以利用:$1+3+5+\cdots +2017=1009^2$,得知所有可能的代数和均为奇数,再考虑到非负数这一条件,我们期望这一最小值为$1$.接下来我们的目标无非是填入符号“$+$”和“$-$”凑出$1$来,考虑到共有$1009$个数,我们需要利用周期性$.$注意到,$(2k-3)-(2k-1)-(2k+1)+(2k+3)=0$,$1009\div 4\cdots 1$,容易构造得
      $1+3-5-7+9+11-13-15+17+\cdots+2011-2013-2015+2017=1$
      若最后一项是$2019$,共$1010$项,因此和为偶数,最小为$0$,构造如下
      $1+3+5-7+9-11+13-15-17+19+\cdots+2013-2015-2017+2019=0$
  • 作者:邱福星
  • 版权:部分题目来自网络,如有侵权,请联系删除
  • 留言区

    请叫我皮老师
    公告
    本站评论区支持上传图片(等待几秒上传完毕再发送)、支持$\LaTeX$公式,使用QQ邮箱可以显示头像,欢迎做题!
    手机访问
    添加微信

    相关文章: